INTERACTION OF QUASIUNIFORM MAGNETIC
FIELD WITH ENSEMBLE OF MHD OSCILLATIONS

S. D. Ivanov UDC 538.4

It is shown that inhomogeneous MHD turbulence in a cold plasma manifests itself as an inhomo-
geneous diamagnet. An equation describing the evolution of the regular component of the mag-
netic field is derived and a formula obtained whereby the coefficient of turbulent magnetic field
diffusion can be estimated, Estimates are made which indicate that this is an efficient mecha-
nism for the decay of the magnetic field of a sunspot.

It is well known that turbulence in a nongyrotropic medium causes anomalous diffusion of a large-scale
magnetic field. Diffusion coefficients are obtained in [1, 2] that differ substantially from the ohmic diffusion
coefficient v if Rey > 1 (Rey, is the magnetic Reynolds number). The effect of the magnetic field on the’
turbulent disturbances was assumed in these papers to be negligible.

In the present paper we investigate the opposite limiting case, i.e., the magnetic field is assumed to
have a strong effect on the turbulent disturbances. The turbulent motion, if its total energy is small com-
pared with the energy of the plasma, can accordingly be represented as a superposition of Alfven and mag-
netoacoustic waves. It is natural to assume that L > [, where L is the characteristic scale of the inhomo-
geneity of the magnetic field, and ! is the characteristic scale of the turbulence. This sort of interaction be-
tween turbulence and a magnetic field can be observed in sunspots and also in experiments with laboratory
plasmas.

1. Basic Equations. Equation for the Magnetic Field

We utilize the following assumptions: a) the turbulence is stationary; b) 8 «< 1 (the cold plasma ap-
proximation); ¢) Rem > 1; d) (v) =0 (the angular brackets denote an average over an ensemble), i.e.,
there are no macroscopic motions in the plasma. The form of the spectral function of MHD oscillations is
known [3].

Low-frequency oscillations will then be described by the following system of equations of magnetohy-
drodynamics:

avIdt + (vy)v = —(/p)yp + (1/4np)rot H, HI; (1.1)
dp/at 1 div(pv) = 0; (1.2)
6H/8t = rotlv, H] + vAH, (1.3)

where p is the density; p is the pressure; v is the velocity; H is the magnetic field intensity; v = ¢/4nc; o
is the conductivity; and ¢ is the velocity of light.

We obtain an equation connecting the magnetic field with the turbulent velocity field from (1.3). To this
end we represent the magnetic field in the form

H(r, &) — HY(r, £) -+ HYr, ),
where HR and HT are, respectively, the regular and turbulent components of the magnetic field, and
CH(r, &> = BR(r, £, (AT = 0.
We average Eq. (1.3) over an ensemble and obtain an equation describing the evolution of the regular magnetic
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field
(OHR/0t = rot ¢ [VH"] > + vAHR, (1.4

In this expression the first term on the right side is unknown. We find it by utilizing the equation for the
turbulent component

OH"/0t = rot[VHR} - vAH?, (1.5)

The diffusion term in (1.5) can be neglected as tp > ty, where tp is the characteristic ohmic diffusion
time and tF is the characteristic time of the magnetic field fluctuations. The turbulent component of the
magnetic field can be represented in the form

i

He(r,2) = | rot v (r, ) HE (r, 1,)] diy. (1.6)
. ,

Inserting (1.6) into ([VHT] > and carrying out the averaging, we obtain
i
AVHT]) = &5 j {% (Hy(r,t:) Vi (r, 0,8) — (HE(r, 1) V) Vi (r, 0, S)] dt,, (1.7)
0

where €jji is the antisymmetric Levi—Civita tensor; Vijj (R, p, s) = (vj(ry, t1) Vis (T, ta) )3 R=(1 + 13)/2;
p =11 — 135 8=ty —t. The correlation function Vjj is weakly dependent on R; it changes appreciably only
when R variesby anamount of the order L. The dependence ofthe function Vij onthe arguments p and s de-
scribes the local structure of the random velocity field. Since tp > 7, where 7 is the correlation time,
we find the integral

t o
(Vi (R, p, ) HR (R, £;) dr,=HR (R, 1) [ V};(R, p.9) X
b : b
x ds=HR (R, ) B;; (R, p,0), (L.9)
where
Bii (R, 0, (")) = Vi] (R, Dy s)e;‘i'(osds'
Utilizing (1.8), we integrate (1.7)

VT = e {5 (HEBy (v, 0,0) — (BRV) B (1,0, 0)- (1.9)

Inserting (1.9) into (1.4) gives an equation for the magnetic field:

oHE
= = Emnitin i (o (HRByi (5,0, 0)) — (HFY) By (5,0, 0)} + VA2, (1.10)

2. Determination of Correlation Tensor of MHD
Turbulent Velocity Field.

y

The velocity-field correlation tensor entering into Eq. (1.10) can be expressed in terms of the spectral
tensor of this field at zero frequency w:

B;; (r, 0, 0) = .fTiJ' {r k, 0)dk, 2.0

where k is the wave vector. We find the spectral tensor from the linearized equations (1.1)-(1.3) for 2 uni-
form magnetic field; then, into terms containing H, we introduce the dependence on r and obtain the quasi-
homogeneous spectral tensor of the velocity field.

We represent the density, velocity, and magnetic field in the form

P =00 +pH 0B, v =v) Lv® H=H, +hi) | h®,
where

00> P> p®, v v, Hy >hs h@,

We obtain equations for p®’, v*
the diffusion term in (1.3) (tp > ty):

wpgvite — ekt - [[kb{%] ] = 0; (2.2)

opkh — po (kvis) =0, (2.3)

), hY from linearized equations (1.1)~(1.3) in k—w space 'by neglecting
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bk + [k [ViaH,) =0, ' (2.4)
where cg is the velocity of sound. ‘
- Subject to the condition 8 « 1 the solution of system (2.2) -(2.4) isthe familiar dispersion relation for
an Alfven and an accelerated magnetoacoustic wave [4] with the following frequencies, respectively:
A kH

IS =2, op = ke
x = .’/41“)09 k A

where cp is the Alfven Velocity

A study of Egs. (2.2)-(2.4) shows that vA(l) hA(l) are perpendicular to Hy and k and that v M(1) g
perpendicular to Hy and lies in the plane of the vectors k and Hy. We can thus write

P = Py 08; kT
_ 0 = Px,0 (k; — (kv) 7),
‘where 7 = Hy/Hy.

For simplicity of presentation we restrict the discussion to interaction between magnetoacoustic waves
and set

T;; (ko) = T3 (k, o).

In the first approximation the velocity amplitudes are independent of time and correspond to the solution for
zero interaction between the waves. If the oscillations are developed from random thermal fluctuations, the
spectral tensor of the velocity field has the following form in the first approximation:

COED M0 S — §(k + K) 8 (0 + o) TS (k, 0), (2.5)
'Y (k, @) = chk o{kk; + (ko) ryr— (k) (kyvy + 1k} (8 (0 + @F ) + 8(0— m::))

where &y, is the spectral functlon of the MHD oscillations. Accordingly, the tensor Tm(k w) has a d-type
maximum at w = * wM and TL Yk, w) =0 for k # 0 and thus makes no contributionto (2 1). The equations for
the second-apprommatlon oorrectmns have the form
" 9pRydt 4 pediv v = —div (ptOviy;
/9t — rot[vi@H,] = rot[v(VRM],

In the Fourier representation these equatmns acqmre the form .

‘-"Pk v — Po (kv(z) ) j‘p(kiz)mt (k"g‘)ml) di; (2.6)
oh®, — [k [viZH,]] = — | [k[v{l o, h{,]] ar, (2.7)

where
di = 8k — k; — k)80 — 0, — a,)dk,dk,de,do,.

We replace pu’ and b’ by their values from Egs. (2.3) and (2.4), and we multiply (2.6) by Hy and (2.7) by pq.
We apply the well-known formula of vector analysis to the second term on the left side of (2.7), subtract (2.6)
from (2.7), and obtain

2 (b, — p2WH,) + v, (cH,) = [ % () () By e, I 2.8
We multiply Eq. (2.8) by V1 ! and average over an ensemble; to the right side of the equality we ap-
ply the random phase approx1mat10n and obtain as a result

<171k cov_;k m‘/\m—-o =0.

We multiply (2.8) by the complex conjugate and average the right and left sides of the equality. Fourth-
order moments appear in the right side. We expand them with the aid of the random phase approximation and,
having utilized (2.5), we consider the obtained expression for w = 0:

7@ (k, 0) = “‘"‘([P;)‘; (s — (9 ©) (1 — (%) 75) Oy Opro (6(p + 9) + 5(p — g) dg, (2.9)
o :
where 1=p—q,p=k—4q, q= k.
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The velocity field spectral tensor (2.9) has the following properties:
1T (k. 0) = 0, 1,7 (k, 0) = 0. (2.10)
In the general case, an axisymmetric spectral tensor can be represented in the form

T = Akk; - Aoty + Agdy; + Adyr; + Ak,

where Ay, = Ak, k), m=1,...,5,
The number of unknown functions Ap(k, kr), can be reduced with the aid of (2.10):
T = Agkeiky + (Ay (k7)° — Ag) 7,75 + Ay8y5 — Ay (k) (k1 + 1,k)),

and we find A; and A3 from the following system of equations:

kb T (k; 0) = £ (k); (2.11)
Tk, 0) = fak), (2.12)
where o '
uli) = - | FEHE (1) k) D 00 08 (p° — )
A
fall) = - ) LD (102 0y oy 08p* — ) da.
A

On solving system (2.11), (2.12), we find

1 ( D2 [(kt)? ()2 1 1 z( Y kt)? (Ir)2
4= i [qufizt { W~ m} Ca1Pp.od(p® — ) dg; 45 = S(W 2 e Ikrgzr)}Qq,o‘bp,oﬁ(pz—wﬂdq.

We thus have an explicit expression for the spectral tensor of the velocity field Tij(k, 0} and can ac-
cordingly integrate (2.1):
(Tis(k, k1,0)dk = (8;; — Ty1)(1/2)] Tislk, kr, 0)dk.

The quasihomogeneous correlation tensor of the velocity field can then be written in the form
Bijr, 0, 0) = e(r, 1)(8;; — w(r, O)1; (v, 1). {2.13)
Inserting (2.13) into Eq. (1.10) gives
OHR/At = —vrot rot LHR, (2.14)

where
y =1 4+ e, t)/v.

It follows from (2.14) that inhomogeneous turbulence manifests itself as an inhomogeneous diamagnet.
A similar result was obtained in [5]. Let us suppose that the turbulence ends somewhere, and that in the
region where it exists it is homogeneous, i.e., let €(r,t) = €5 for r €Q and €(r, t) = v outside the region Q.
The boundary conditions on the magnetic field will then be as follows:

R R, R __ _gR
an = anv EoHt; = .\/Htgi

where Hf]{i, H%z’ HRI, Hlé are the normal and tangential components of the magnetic field at the boundary; the
index 1 refers to the inside of the surface containing Q@ and the index 2, to the outside. The magnetic per-
meability of a diamagnet of this sort 4 =~ v/€y, i.e., let p <1 for Rey, > 1. The following estimate for € can
be written down with the aid of the results of [6]:

e = (1/n)(v/ca)Pvh,,
where v is the velocity amplitude, and A is the external scale of the turbulence. If we set €(r, t) = €;, then
the characteristic field diffusion time is estimated by
i LPl4n%ey = (L*4mvhe)(cal v)3.
We ut1hze this formula to estimate the time required to damp the magnetic field of a sunspot; v =~ 10° e/ sec,
~ 6-10' cm is the dimension of the granule in the sunspot, and p = 2-10~ 1 g/cm Ag is known, the diffusion

tlme is determined by the smallest characteristic dimension of the system. In the simplest models the sun-
spot has the shape of a cylinder. We estimate the depth h of the sunspot from the condition W = Wy, where
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W and Wi are, respectively, the energies of the turbulent motion and the magnetic field. Then, for H=
1000 G, the sunspot diameter D~ 5-10% cm, h ~ 1-10® em; for H=2000 G, D~9-10% em, h ~2-10° cm.
Finally, for H ~ 1000 G we obtain tp =8 days, and for H = 2000 G, tp =10 days.

These damping times do not exceed the sunspot lifetime. Accordingly, we can assume that anomalous

magnetic field damping as a result of turbulence is one of the factors leading to the disappearance of sun-

spots.

In conclusion, the author wishes to thank S, I. Vainshtein for suggesting the problem and for his con-

stant interest in the work.
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